Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; : 101945, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653401

RESUMO

OBJECTIVE: Glucose dependent insulinotropic polypeptide (GIP) is well established as an incretin hormone, boosting glucose-dependent insulin secretion. However, whilst anorectic actions of its sister-incretin glucagon-like peptide-1 (GLP-1) are well established, a physiological role for GIP in appetite regulation is controversial, despite the superior weight loss seen in preclinical models and humans with GLP-1/GIP dual receptor agonists compared with GLP-1R agonism alone. METHODS: We generated a mouse model in which GIP expressing K-cells can be activated through hM3Dq Designer Receptor Activated by Designer Drugs (DREADD, GIP-Dq) to explore physiological actions of intestinally-released GIP. RESULTS: In lean mice, Dq-stimulation of GIP expressing cells increased plasma GIP to levels similar to those found postprandially. The increase in GIP was associated with improved glucose tolerance, as expected, but also triggered an unexpected robust inhibition of food intake. Validating that this represented a response to intestinally-released GIP, the suppression of food intake was prevented by injecting mice peripherally or centrally with antagonistic GIPR-antibodies, and was reproduced in an intersectional model utilising Gip-Cre / Villin-Flp to limit Dq transgene expression to K-cells in the intestinal epithelium. The effects of GIP cell activation were maintained in diet induced obese mice, in which chronic K-cell activation reduced food intake and attenuated body weight gain. CONCLUSIONS: These studies establish a physiological gut-brain GIP-axis regulating food intake in mice, adding to the multi-faceted metabolic effects of GIP which need to be taken into account when developing GIPR-targeted therapies for obesity and diabetes.

2.
Mol Metab ; 66: 101604, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184065

RESUMO

OBJECTIVE: Insulin-like peptide 5 (INSL5) signalling, through its cognate receptor relaxin/insulin-like family peptide receptor 4 (RXFP4), has been reported to be orexigenic, and the high fat diet (HFD) preference observed in wildtype mice is altered in Rxfp4 knock-out mice. In this study, we used a new Rxfp4-Cre mouse model to investigate the mechanisms underlying these observations. METHODS: We generated transgenic Rxfp4-Cre mice and investigated central expression of Rxfp4 by RT-qPCR, RNAscope and intraparenchymal infusion of INSL5. Rxfp4-expressing cells were chemogenetically manipulated in global Cre-reporter mice using designer receptors exclusively activated by designer drugs (DREADDs) or after stereotactic injection of a Cre-dependent AAV-DIO-Dq-DREADD targeting a population located in the ventromedial hypothalamus (RXFP4VMH). Food intake and feeding motivation were assessed in the presence and absence of a DREADD agonist. Rxfp4-expressing cells in the hypothalamus were characterised by single-cell RNA-sequencing (scRNAseq) and the connectivity of RXFP4VMH cells was investigated using viral tracing. RESULTS: Rxfp4-Cre mice displayed Cre-reporter expression in the hypothalamus. Active expression of Rxfp4 in the adult mouse brain was confirmed by RT-qPCR and RNAscope. Functional receptor expression was supported by cyclic AMP-responses to INSL5 application in ex vivo brain slices and increased HFD and highly palatable liquid meal (HPM), but not chow, intake after intra-VMH INSL5 infusion. scRNAseq of hypothalamic RXFP4 neurons defined a cluster expressing VMH markers, alongside known appetite-modulating neuropeptide receptors (Mc4r, Cckar and Nmur2). Viral tracing demonstrated RXFP4VMH neural projections to nuclei implicated in hedonic feeding behaviour. Whole body chemogenetic inhibition (Di-DREADD) of Rxfp4-expressing cells, mimicking physiological INSL5-RXFP4 Gi-signalling, increased intake of the HFD and HPM, but not chow, whilst activation (Dq-DREADD), either at whole body level or specifically within the VMH, reduced HFD and HPM intake and motivation to work for the HPM. CONCLUSION: These findings identify RXFP4VMH neurons as regulators of food intake and preference, and hypothalamic RXFP4 signalling as a target for feeding behaviour manipulation.


Assuntos
Ingestão de Alimentos , Neurônios , Receptores Acoplados a Proteínas G , Animais , Camundongos , Hipotálamo/citologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Cell Rep ; 36(2): 109362, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260928

RESUMO

The mediobasal hypothalamus (MBH; arcuate nucleus of the hypothalamus [ARH] and median eminence [ME]) is a key nutrient sensing site for the production of the complex homeostatic feedback responses required for the maintenance of energy balance. Here, we show that refeeding after an overnight fast rapidly triggers proliferation and differentiation of oligodendrocyte progenitors, leading to the production of new oligodendrocytes in the ME specifically. During this nutritional paradigm, ME perineuronal nets (PNNs), emerging regulators of ARH metabolic functions, are rapidly remodeled, and this process requires myelin regulatory factor (Myrf) in oligodendrocyte progenitors. In genetically obese ob/ob mice, nutritional regulations of ME oligodendrocyte differentiation and PNN remodeling are blunted, and enzymatic digestion of local PNN increases food intake and weight gain. We conclude that MBH PNNs are required for the maintenance of energy balance in lean mice and are remodeled in the adult ME by the nutritional control of oligodendrocyte differentiation.


Assuntos
Diferenciação Celular , Eminência Mediana/citologia , Rede Nervosa/fisiologia , Fenômenos Fisiológicos da Nutrição , Oligodendroglia/citologia , Adulto , Animais , Linhagem da Célula , Proliferação de Células , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Oligodendroglia/ultraestrutura , Análise de Célula Única , Transcriptoma/genética
4.
Mol Metab ; 42: 101070, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32898712

RESUMO

The nucleus of the solitary tract (NTS) is emerging as a major site of action for the appetite-suppressive effects of leading pharmacotherapies currently investigated to treat obesity. However, our understanding of how NTS neurons regulate appetite remains incomplete. OBJECTIVES: In this study, we used NTS nutrient sensing as an entry point to characterize stimulus-defined neuronal ensembles engaged by the NTS to produce physiological satiety. METHODS: We combined histological analysis, neuroanatomical assessment using inducible viral tracing tools, and functional tests to characterize hindbrain-forebrain circuits engaged by NTS leucine sensing to suppress hunger. RESULTS: We found that NTS detection of leucine engages NTS prolactin-releasing peptide (PrRP) neurons to inhibit AgRP neurons via a population of leptin receptor-expressing neurons in the dorsomedial hypothalamus. This circuit is necessary for the anorectic response to NTS leucine, the appetite-suppressive effect of high-protein diets, and the long-term control of energy balance. CONCLUSIONS: These results extend the integrative capability of AgRP neurons to include brainstem nutrient sensing inputs.


Assuntos
Regulação do Apetite/fisiologia , Comportamento Alimentar/fisiologia , Núcleo Solitário/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Apetite/fisiologia , Encéfalo/metabolismo , Metabolismo Energético , Hipotálamo/metabolismo , Leptina/metabolismo , Leucina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade , Núcleo Solitário/metabolismo
5.
Cell Rep ; 30(9): 3067-3078.e5, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130907

RESUMO

Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial coverage. These functional and morphological neuroglial changes are triggered by postprandial hyperglycemia. Chemogenetically induced glial retraction on POMC neurons is sufficient to increase POMC activity and modify meal patterns. These findings indicate that synaptic plasticity within the melanocortin system happens at the timescale of meals and likely contributes to short-term control of food intake. Interestingly, these effects are lost with a high-fat meal, suggesting that neuroglial plasticity of POMC neurons is involved in the satietogenic properties of foods.


Assuntos
Hiperglicemia/fisiopatologia , Hipotálamo/metabolismo , Refeições , Neuroglia/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Glicemia/metabolismo , Fenômenos Eletrofisiológicos , Comportamento Alimentar , Hiperglicemia/sangue , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Período Pós-Prandial , Sinapses/metabolismo
6.
Front Nutr ; 5: 125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619871

RESUMO

High variability exists in individual susceptibility to develop overweight in an obesogenic environment and the biological underpinnings of this heterogeneity are poorly understood. In this brief report, we show in mice that the vulnerability to diet-induced obesity is associated with low level of polysialic acid-neural cell adhesion molecule (PSA-NCAM), a factor of neural plasticity, in the hypothalamus. As we previously shown that reduction of hypothalamic PSA-NCAM is sufficient to alter energy homeostasis and promote fat storage under hypercaloric pressure, inter-individual variability in hypothalamic PSA-NCAM might account for the vulnerability to diet-induced obesity. These data support the concept that reduced plasticity in brain circuits that control appetite, metabolism and body weight confers risk for eating disorders and obesity.

7.
Front Neurosci ; 11: 245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515677

RESUMO

The polysialic acid (PSA) is a large glycan that is added to cell-surface proteins during their post-translational maturation. In the brain, PSA modulates distances between cells and controls the plasticity of the nervous system. In the hypothalamus, PSA is involved in many aspects of energy balance including food intake, osmoregulation, circadian rhythm, and sleep. In this work, we investigated the role of hypothalamic PSA in the regulation of plasma cholesterol levels and distribution. We report that HFD consumption in mice rapidly increased plasma cholesterol, including VLDL, LDL, and HDL-cholesterol. Although plasma VLDL-cholesterol was normalized within the first week, LDL and HDL were still elevated after 2 weeks upon HFD. Importantly, we found that hypothalamic PSA removal aggravated LDL elevation and reduced HDL levels upon HFD. These results indicate that hypothalamic PSA controls plasma lipoprotein profile by circumventing the rise of LDL-to-HDL cholesterol ratio in plasma during overfeeding. Although mechanisms by which hypothalamic PSA controls plasma cholesterol homeostasis remains to be elucidated, these findings also suggest that low level of hypothalamic PSA might be a risk factor for dyslipidemia and cardiovascular diseases.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26441833

RESUMO

The melanocortin system is one of the most important neuronal pathways involved in the regulation of food intake and is probably the best characterized. Agouti-related peptide (AgRP) and proopiomelanocortin (POMC) expressing neurons located in the arcuate nucleus of the hypothalamus are the key elements of this system. These two neuronal populations are sensitive to circulating molecules and receive many excitatory and inhibitory inputs from various brain areas. According to sensory and metabolic information they integrate, these neurons control different aspects of feeding behavior and orchestrate autonomic responses aimed at maintaining energy homeostasis. Interestingly, composition and abundance of pre-synaptic inputs onto arcuate AgRP and POMC neurons vary in the adult hypothalamus in response to changes in the metabolic state, a phenomenon that can be recapitulated by treatment with hormones, such as leptin or ghrelin. As described in other neuroendrocrine systems, glia might be determinant to shift the synaptic configuration of AgRP and POMC neurons. Here, we discuss the physiological outcome of the synaptic plasticity of the melanocortin system, and more particularly its contribution to the control of energy balance. The discovery of this attribute has changed how we view obesity and related disorders, and opens new perspectives for their management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...